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Introduction & Motivation

Secure multiparty compute and consensus mechanisms form the core of modern trustless cryptosystems such as
Ethereum, underpinning frontier advancements in privacy and scalability. BLS signatures and elliptic curve cryptog-
raphy provide the cryptographic foundations which allow Ethereum to scale to hundreds of thousands of validators
whilst maintaining security, efficiency, and decentralization.

Elliptic curves support bilinear pairings which underpin key components on the frontier of crypto research - from ZK-
SNARKSs to generalized secure multi-party compute such as the consensus mechanisms in Ethereum 2.0. The impor-
tance of these cryptographic techniques in Ethereum’s ecosystem cannot be overstated. Products like ZCash, IBM'’s
Identity Mixer, Voltage SecureMail and iMessage all leverage ECC technology to provide strong privacy guarantees,
credential verification, forward secrecy and more. There are many other such use cases which one can imagine, such
as building out ZK rollups which are faster and more performant or enhancing pairing efficiency to accelerate the
block signing process for Ethereum block builders, thereby reducing latency within the PBS auction. This optimiza-
tion consequently facilitates improved throughput at the consensus layer, leading to overall network performance
enhancement.

Efficient Validator Identification and Accountability Each validator has a public/private key pair relying on BLS
cryptography, with the public key serving as the validator’s identity in the protocol. Validators sign messages (attes-
tations, blocks, etc.) with their private key, allowing other participants to verify that specific validators made particular
attestations or proposed blocks. This ultimately holds validators accountable for their actions in the protocol.

Signature Aggregation BLS signatures have a unique property which allows them to be aggregated, namely hun-
dreds or even thousands of individual signatures can be combined into a single aggregate signature in a secure and
unbiased fashion. This aggregate signature can be verified singularly while still proving that all the individual valida-
tors signed. This dramatically reduces the amount of signature data that needs to be stored and transmitted, which
are expensive operations.

Committee Selection ECC enables deterministic, pseudo-random selection of validators into committees, giving
the protocol the ability to divide work amongst subsets of validators in an unpredictable, but importantly verifiable,
manner.

Randomness Generation BLS signatures are used in the RANDAO mechanism to generate verifiable randomness
for the protocol, which is crucial for committee selection and other core protocol functions, though notably not avail-
able on L2 networks more generally.

The general perception in the space about this area of research and development is that it is akin to esoteric black
magic. Thus we endeavor here, for both ourselves and you, the reader, to provide elucidations on the rudiments of
ECC cryptography, bilinear pairings, and other related topics. At WARLOCK, Sylow underpins our multi-party com-
pute thesis for how we securely generate data feeds between nodes in the network via threshold signatures, which
may then be verified on-chain with SolBLS.

This document provides a comprehensive mathematical and cryptographic primer for the Sy low library, which im-
plements elliptic curve cryptography for the BN_254 curve at present, with future support planned for BLS_12_381

as that curve becomes more widely supported within the ecosystem. At present, BN_254 is the only pairing capable
curve supported widely in EVM environments. Notably, though there are many off-chain implementations of BN_254
floating around, none are cryptographically secure and audited — which is why WARLOCK created Sy low and released
it as a public good. The material covered ranges from foundational concepts in abstract algebra to advanced topics
in pairing-based cryptography and distributed key generation.

Readers are expected to have a background in mathematics and computer science. The material is dense and tech-
nical in nature, reflecting the complexity of modern elliptic curve cryptography. To help with overall transparency of
our design, code snippets and examples are provided to illustrate key concepts and their implementation in Sy low.
By providing this comprehensive overview of the relevant mathematics and algorithms, we aim to enable deeper
understanding and effective use of the Sylow library.
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https://github.com/warlock-labs/sylow
https://github.com/warlock-labs/solbls
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Glossary of Notation
Notation Meaning
{ Set delimiters
{7/} Empty set
(S Element of
¢ Not an element of
C Proper subset
- Subset or equal to
D Proper superset
D Superset or equal to
U Union
N Intersection
\\ Set difference
A Complement of set A
A€ Complement of set A (alternative notation)
P(A) Power set of A
A x B Cartesian product of sets A and B
|A] Cardinality (size) of set A
No Cardinality of the natural numbers (countable infinity)
¢ Cardinality of the real numbers (continuum)
v For all
3 There exists
= There exists a unique
:or| Such that
{xe A|Px)} Set-builder notation: set of all x in A such that P(x) is true
[a, b] Closed interval fromato b
(a,b) Open interval from a to b
[a,b) or (a,b] Half-open intervals
AAB Symmetric difference of sets A and B
L Disjoint union
Uier Ai Union of a family of sets
ier Ai Intersection of a family of sets
A™ Cartesian product of A with itself n times
f:A—B Function f from set A to set B
f(A) Image of set A under function f
f=1(B) Preimage of set B under function f
dom(f) Domain of function f
cod(f) Codomain of function f
range(f) Range of function f
ida Identity function on set A
fog Composition of functions f and g
fla Restriction of function f to set A
f:A< B Surjective function from A to B
f:A—B Injective function from A to B
f:A>B Bijective function from A to B
Z Set of all integers
Q Set of all rational numbers
R Set of all real numbers
C Set of all complex numbers
&, iff If and only if
Z+,QF, Rt Sets of all positive integers, rational numbers, and real
numbers, respectively
alb a divides b
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Notation

Meaning

A

e
GL(2,R)
P(X)

/N
a=b (modn)
b, ®
o(x)

(x)

Gl

\%

yA(e)
GL(2,C)
Qs
SL(2,R)

Mz (R)
Z1i]

H

R/I

RIX]

F(a)
irr(a/F)
deg(a/F)
[E:Fl

C.
I'(E/F)
®(H)
I'(f(X)/F)

Symmetric difference

Identity element of a group

General linear group of degree 2 over R
Set of subsets X
Theset{0,1,2,...,n—1}

The integers a and b are congruent modulo n
Addition and multiplication modulo n
Order of the element x

Set of powers of the element x

Order of the group G

Klein 4-group

Center of the group G

General linear group of degree 2 over C
Group of unit quaternions

Special linear group of degree 2 over R
Centralizer of the element g

Direct product of G and H
fisafunctionfromSto T

The inverse of the function f
Composite function

Identity function on the set X
Symmetric group on X

Symmetric group of degree n
Alternating group of degree n

Group of symmetries of a square
Meansxy ' € H

Meansx 'y € H

The indexof Hin G

H is a subgroup of G

H is a normal subgroup of G

Quotient group of G by H

G and H are isomorphic

Inverse image of | under ¢

Group of automorphisms of the group G
Canonical homomorphism

Kernel of the homomorphism ¢
Normalizer of the subgroup H

Direct sum of therings Rand S

Ring of all 2 x 2 real matrices

Ring of Gaussian integers

Ring of quaternions

Quotient ring of R by I

Polynomial ring over R

Field obtained by adjoining a to the field F
Irreducible polynomial of a over F
Degree of a over F

Degree of the field E over the field F
Field of constructible complex numbers
Galois group of E over F

Fixed field of the subgroup H of I'(E /F)
Galois group of f(X) over F
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Every Good Journey Starts With a Map

We'll begin with fundamental concepts in set theory, group theory, and ring theory. These will provide the basis for
understanding more advanced structures like fields and vector spaces. Number theory and Euclidean domains will
be introduced to provide essential tools for cryptographic applications.

As we progress, we'll delve into algebraic varieties and elliptic curves, which are crucial for understanding the Barreto-
Naehrig (BN) 254 curve. We'll then explore bilinear pairings, which are fundamental to the Boneh-Lynn-Shacham
(BLS) signature scheme.

Finally, we'll apply these concepts to the specific case of the BN_254 curve and the BLS signature scheme, culminat-
ing in an exploration of threshold signatures, rank-one constraint system (R1CS), and distributed multi-party compu-
tation.

By the end of this primer, readers will have a solid grasp of the mathematical concepts necessary to understand and
implement BLS threshold signatures using the BN_254 pairing. This knowledge is crucial for developing secure and
efficient cryptographic protocols in various applications, including blockchain technology and distributed systems.

The roadmap of our journey will be roughly:

g . ) Vector Algebraic ‘
R
[ Sets ]‘{ Groups }—{ Ings }*{ Domains ]‘{ Fields }—>‘ Spaces ‘ Varicties

Elliptic Bilinear BLS‘

Mathematical Preliminaries

Set Theory

Set theory forms the bedrock of modern mathematics. It provides us with alanguage to discuss collections of objects
and the relationships between them. For a more in-depth treatment of set theory, Halmos’ Naive Set Theory and
Suppes’ Axiomatic Set Theory are superb resources.

Basic Definitions

A set is a collection of distinct objects, called elements or members of the set.

If ais an element of set A, we write a € A.

The empty set, denoted &, is the unique set with no elements.

A set A is a subset of set B, denoted A C B, if every element of A is also an element of B.

If a set A is a subset of set B but the two sets are not equal, then A is a proper subset of B, denoted A C B.
Every set A C A, orin other words, every set is contained by itself.

Set Operations
Set theory defines several operations on sets:

e Union: AUB ={x:x € A orx € B} The union of two sets contains all elements that are in either set.

Intersection: A N B = {x: x € A and x € B} The intersection contains all elements common to both sets.

Difference: A \ B = {x : x € A and x ¢ B} The difference contains elements in A but notin B.

Symmetric Difference: AAB = (A \ B) U (B \ A) This operation results in elements that are in either set, but
not in both.
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Cartesian Product

The Cartesian product of two sets A and B, denoted A x B, is the set of all ordered pairs where the first element
comes from A and the second from B:

AxB={(ab):acAandb c B}

Relations

Given a Cartesian product A x B, a relation between A and B is some subset R of A x B. If ordered pair (a,b) isin R
we can write aRb. Functions, discussed below, are a type of relation with certain properties.

Functions

A function f from set A to set B, denoted f : A — B, is a rule that assigns to each element of A exactly one element
of B. We call A the domain and B the codomain of f. The set of all f(a) for a € A is called the range of f.

Functions can have special properties:

e Injective (one-to-one): Vaq,a; € A, f(aq) = flaz) = a1 =ay
e Surjective (onto): Vb € B,Ja € A: f(a)=Db
¢ Bijective (one-to-one correspondence): Both injective and surjective

Cardinality

The cardinality of aset A, denoted |A|, is the number of elementsin A if A is finite. For infinite sets, cardinality becomes
more complex:

e Countably infinite or denumerable: A set with the same cardinality as the natural numbers, denoted Xp.
e Uncountable: An infinite set that is not countably infinite, such as the real numbers, with cardinality denoted c.

Group Theory

Group theory is the study of symmetries and algebraic structures. Professor Macauley’s Visual Group Theory lec-
tures on Youlube and Nathan Carter’s Visual Group Theory book provide a beautiful and approachable exposition.
Saracino’s Abstract Algebra is approachable but in need of fresh typesetting. Lang’s Algebra is also a good resource
here and more generally on rings and fields to come.

Groups
A group is an ordered pair (G, *x) where G is a set and x is a binary operation on G satisfying four axioms:

1. Closure:Va,b € G,axb e G

2. Associativity: Va,b,c € G,(a*b)xc=a=x* (bx*c)
3. Identity: e c G,Va e G:a*xe=exa=a

4 Inverse:Vac G,3a'€eG:axa'=a"xa=e

The identity element is often denoted as e, and the inverse of an element a is written as a—". We also have “subtrac-
tion” defined as the binary operator of the inverse of an element.

Abelian Groups

As an Abelian group, named after Norwegian mathematician Niels Henrik Abel, is a group which is commutative
under the binary operation *. A group G isabelianif a * b =b * a,Va,b € G.

Finite Groups

A group G is finite if the number of elements in G is finite, which then has cardinality or order |G].
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Lagrange’s Theorem

For a finite group G with a € G and let there exist a positive integer d such that a¢ is the smallest positive power of a
thatis equal to e, the identity of the group. Let n = |G| be the order of G, and let d be the order of a, then a™ = eand
d|n.

Subgroups

A subset H of a group G is a subgroup if it forms a group under the same operation as G. We denote thisas H < G.
The order of a subgroup always divides the order of the group (Lagrange’s Theorem). Similar to a set, every group
G C G, and for every group there is a trivial subgroup containing only the identity.

Homomorphisms and Isomorphisms

A function f : G — H between groups is a homomorphism if it preserves the group operation: f(a * b) = f(a) *’
f(b)Va,b € G.

An isomorphism is a bijective homomorphism. If there exists an isomorphism between groups G and H, we say they
are isomorphic and write G = H.

Cosets and Normal Subgroups
For a subgroup H of G and an element a € G, we define:

o Leftcoset: aH ={ah:h € H}
e Rightcoset: Ha = {ha: h € H}

A subgroup N of G is called normal if gN = NgVg € G. We denote thisas N« G.

Cyclic Groups

A group G is cyclic if there exists an element g € G such that every element of G can be written as a power of g:
G={(g)={g":neZ}

Here, g is called a generator of G. Cyclic groups have several important properties:

Every element x € G can be written as x = g™ for some integer n.
If G is infinite, it is isomorphic to (Z, +).

If G is finite with |G| = n, it is isomorphic to (Z/nZ, +).

All cyclic groups are abelian.

Subgroups of cyclic groups are cyclic.

The order of G is the smallest positive integer m such that g™ = e.

Quotient Groups

If N < G, we can form the quotient group G/N, whose elements are the cosets of Nin G.
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Ring Theory
Rings

Aring (R, +, -) isanalgebraic structure consisting of a set R with two binary operations, addition (+) and multiplication
(+), satisfying the following axioms:

1. (R,+) is an Abelian group:
Closure: Va,b € R,a+b R
Associativity: Va,b,c € R,(a+b)+c=a+ (b+c)
Commutativity: Va,b € R,a+b=b+a
Identity: 30 € R,YVa e R,a+0=0+a=a
Inverse: Va € R,3(—a) e R,a+ (—a)=(—a)+a=20
2. (R,-) isamonoid:
e Closure: Va,b € R,a-b eR
e Associativity: Va,b,c € R,(a-b)-c=a-(b-c)
3. Distributivity:
e Left distributivity: Va,b,c € R,a- (b+c)=(a-b)+ (a-c)
o Right distributivity: Va,b,c € R,(a+b)-c=(a-c)+ (b-c)

Aring is called commutative if multiplication is commutative, i.e,, Va,b € R,a- b = b - a. If aring has a multiplicative
identity element 1 # @ suchthatVa € R,1-a=a-1 = q,itis called a ring with unity.

Ideals

Anideal of aring Ris a subset I C R where:

1. (I,+) is a subgroup of (R, +), meaning:
a. Tis non-empty
b. Forallaabel,a—bel
2. Forallr e Randie [,bothr-ieIandi-r € I(absorption property)

The absorption property of ideals interacts with both ring operations, as it involves multiplication by any ring element
and the result remains in the ideal.
Quotient Rings

Foraring R and ideal I, the quotient ring R/TisdefinedasR/I ={r+1:r € Rl,wherer+1={r+1i:1 € [}is the coset
of r modulo 1. Operations in R/I are defined as:

1. Addition: (a+ 1)+ (b+1)=(a+b)+1
2. Multiplication: (a+1)- (b+1I)=(a-b)+1

These operations are well-defined because of the ideal properties, particularly the absorption property.

Polynomial Rings

Given aring R, the polynomial ring R[x] is defined as the set of all formal sums of the form:

n
f(x) = Z aix' = ag + a1x 4+ azx? + .. + apx™
i—0

where:

. neZ"

2. a; € R(called coefficients)

3. xis an indeterminate (or variable)
4. Only finitely many a; are non-zero

The ring structure of R[x] is defined by the following operations:
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1. Addition: For f(x) = >~ a;xtand g(x) = }_ bix},

max (deg(f),deg(g)) )
(f+ g)(x) = (@i +bi)x"

2. Multiplication: For f(x) = 5~ a;xtand g(x) = }_ bix},

(f)+deg(g)
(Fr9)= > (D abx
k=0

i+j=k

Key properties:

The zero polynomial, denoted 0, has all coefficients equal to @.

If R has a unity 1 # 0, then R[x] has a unity, which is the constant polynomial 1.
R is embedded in R[x] as the set of constant polynomials.

If R is commutative, then R[x] is commutative.

This definition treats polynomials as formal algebraic objects, not as functions. The construction can be extended to
multiple variables, e.g., R[x,y] = (R[x])[y].

Number Theory

Prime Numbers and Divisibility

A prime number is a natural number greater than 1 that is only divisible by 1 and itself. The fundamental theorem of
arithmetic states that every integer greater than 1 can be uniquely represented as a product of prime powers.

For integers a and b, we say a divides b (denoted a | b) if there exists an integer k such thatb = ak. Ifa | band a | c,
then a | (bx + cy) for any integers x and y.

Greatest Common Divisor (GCD)

The greatest common divisor of two integers a and b, denoted gcd(a, b), is the largest positive integer that divides
both a and b. Key properties include:

e gcd(a,b) =ged(|al, [b])
e gcd(a,b) = gcd(b, a mod b) (basis for the Euclidean algorithm)
e There exist integers x and y such that gcd(a, b) = ax + by (Bézout’s identity)

Integral Domains

Anintegral domain is a commutative ring with unity that has no zero divisors. In other words, for all non-zero elements
a,b € R,ifa-b = 0@, then either a = @ or b = 8. (An example of zero divisors would be 2 and 3 in Zg, because both
2 and 3 are nonzero but 2 - 3 = @ in this ring. This property is crucial as it allows for cancellation in Multiplication:if
a-b=a-canda #0,thenb =c.

Euclidean Domains

A Euclidean domain is an integral domain R equipped with a function 5 : R \ {8} — N U {@} (called the Euclidean
function) satisfying:

e Forallnon-zero a,b € R, 5(a) < d(ab)
e Forall a,b € Rwith b # 0, there exist g, € Rsuch that a = bq + r and either r = @ or &(r) < 5(b)

The second property is known as the Euclidean division algorithm, which is a generalization of the division algorithm
for integers. This algorithm allows us to perform division with remainders in the domain.

RESEARCH DIVISION WARLOCK
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Examples of Euclidean Domains

1. The integers Z with 5(a) = |q|
2. The polynomial ring F[x] over a field F with 5(p) = deg(p)

Euclidean Division

Euclidean division is the process of dividing one integer by another to produce a quotient and a remainder. In the
context of modular arithmetic, we're particularly interested in the remainder.

For integers a and b with b # @, there exist unique integers q (quotient) and r (remainder) such that:
a=bq+r

where @ < r < |b|.

Euclidean Division Algorithm Here's a pseudocode algorithm for Euclidean division:

def euclidean_division(a, b):
if b = @:
error "Division by zero"
g = floor(a / b)
r=a->b=*agq
if r < 0:
if b > @:
q=49-
9 r=r+»>b
10 else:
11 q=9q
12 r=r
13 return (g, r)

CONONUL PR WN -
=

o+
-

In Zs, we're primarily concerned with the remainder r, which will always be in the set {0, 1, 2, 3, 4}.

Extended Euclidean Division

The extended Euclidean Division is a way to compute the greatest common divisor (GCD) of two numbers a and b,
and also find the coefficients of Bézout’s identity, which states that:

gcd(a,b) = ax + by

for some integers x and y.

def extended_euclidean_division(a, b):

if b = 0:
return (a, 1, 0)

else:
(gcd, xp, yp) = extended_gcd(b, a mod b)
X = yp
y = xp - floor(a / b) * yp
return (gcd, x, vy)

oONOURA~RWN -

This algorithm not only computes the GCD but also finds the coefficients x and y in Bézout's identity.
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Field Theory
Fields

A field F is a set with two binary operations defined over it and closed under it, usually addition (+) and multiplication
(-). The field F must satisfy the following four axioms:

1. (F,+) is an abelian group with identity element @

2. (F,+,-) isa commutative ring with identity element 0

3. (F\{@},-) or F* is an Abelian group with identity element 1
4. Distributivity: a- (b+c¢) =(a-b)+ (a-c)Va,b,c € F

Formally, a field is a commutative ring where every non-zero element has a multiplicative inverse. Forevery a € F, a #
0, there existsb € Fsuchthata-b = 1¢.

Examples of infinite fields include the rational numbers Q, the real numbers R, and the complex numbers C.

Division in Infinite Fields
In a field F, division is defined for all non-zero elements. For any a,b € Fwith b £ @, we define:
axb=a-b"’

where b~ is the unique multiplicative inverse of b. This inverse always exists for non-zero elements in a field.

Every field is automatically a Euclidean domain, where we can define (a) = @ for all non-zero a. The Euclidean
division algorithm simplifies in fields: for any a,b € F with b # @, we can always find unique g, r € F such that:

a=bq+r
wherer =0,andq = a+b.

Finite Fields

Finite fields, also known as Galois fields, are fields with a finite number of elements. They are denoted GF(q) or Fq,
where q = p™ for some prime p and positive integer n.

Key properties of finite fields include:

e The order (humber of elements) of a finite field is always a prime power.
e For each prime power g, there exists a unique (up to isomorphism) finite field of order q.
e The multiplicative group F;, = IF,,{@} of a finite field (as defined in field axiom 3) is cyclic.

Modular Arithmeticin Z,
For any prime p, we define the prime field Z,, as the set of integers modulo p:
Z, =1{0,1,2,..p — 1}

Example: In Zs, we have {0, 1, 2, 3, 4}.

Modular arithmetic is a system of arithmetic for finite fields and rings, where numbers “wrap around” when reaching
a certain value, called the modulus.

All operations in Z,, are performed modulo p.

Addition and Subtraction Fora,b € Zj:
a®b=(a+b)modp

a©b=(a—b)modp
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Example: In Zs, the addition table is:

AWN O
AWNO|©
ORWN |
SO WN(N
NSO W W
WN -2~

Multiplication and Division For a,b € Z;:
a®b=(axb)modp

Division is defined as multiplication by the multiplicative inverse.

Example: In Zs, the multiplication table is:

AWN_2O|®
[SESESESESRENS]
ANWUWN_2RO| -
WP NO|N
NP2 W
2 NNWA| A~

In finite fields, division is performed as follows:

e For prime fields I ,:
a+-b=a-b' (modp)

e For extension fields
a(x) =b(x) =a(x)-b(x)"" (mod f(x))

where f(x) is the irreducible polynomial used to construct IF,,».. In both cases, the multiplicative inverse can be com-
puted using the Extended Euclidean Algorithm.

Euler’s Totient Function Euler’s Totient Function, denoted as ¢ (n) or ¢ (n), counts the number of positive integers
up to n that are relatively prime to n (i.e., their greatest common divisor with nis 1).

Definition For a positive integer n, ¢(n) is the count of numbers k in the range 1 < k < nwhere ged(k,n) = 1.

Formula For a positive integer n with prime factorizationn = p3" - p3? - .. - pp*:

k

1
dm)=n]J1- =)
i1 Pi
Properties
e Foraprime numberp, db(p) =p—1
e ¢ is multiplicative: if gcd(a,b) = 1, then ¢(ab) = d(a) - ¢(b)
e Foraprime power p¥, ¢(p*) = p* —p* " =p*(1 - 1)

Examples

1. $(10) = 4,as 1,3, 7,9 are relatively prime to 10
2. $(12) = 4,as 1,5, 7,11 are relatively prime to 12
3. $(15) =8,as1,2,4,%,8,11,13,14 are relatively prime to 15
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Calculation Method

1. Find the prime factorization of n
2. For each prime factor p, multiply n by (1 — %)
3. Theresultis p(n)

Fermat’s Little Theorem and Euler’s Theorem Fermat’s Little Theorem states that for any integer a not divisible by

P
a? =1 (mod p)

Example: In Zs, for any non-zero a, a* = 1 (mod 5)
We can verify this using the multiplication table:
—1“=1=1 (mod 5)—2*
=222Q2=4R2®2=3Q2

=1 (Mod5)—3*=303®3®3=203®3=193=3 (mod5)—4*
=4bR4R4LRL=104R4=4R4=1 (mod 5)

Applications

1. Finding multiplicative inverses: a=' = a?~2 (mod p)
(a) Example: InZs,37 ' = 3% =2 (mod 5)

2. Efficient exponentiation: a™ = a™ M4 (*=1) (mod p) for a # 0
(@) Example: InZ5,3"8 = 31@mod 4 = 32 — 4 (mod 5)

Congruences and Residue Classes In Z,,, two integers a and b are congruent if:
a=b (mod p)

The residue classes in Z,, are:
il ={.i—pLi+pi+2p,..}

fori=0,1,..,p — 1. Example: In Zs, the residue classes are:

@ ={..,—5,0,5,10,...}
M={..,—4,1,6,11,..}
2] ={..,—-3,2,%,12,..}
31={..,—2,3,8,13,..}
4] ={..,—1,4,9,14,..}

Co-prime Numbers Two integers a and b are considered co-prime (or relatively prime) if their greatest common
divisor (GCD) is 1. In other words:
gcd(a,b) =1

Some key properties of co-prime numbers include:

e [f a and b are co-prime, there exist integers x and y such that:
ax+by =1

This is known as Bézout's identity.
e If a and b are co-prime, then:

(a mod b) has a multiplicative inverse modulo b
This means there exists an integer x such that:

ax=1 (mod b)
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e The product of co-prime numbers is co-prime to each of the original numbers.

To find co-prime numbers, one can use the Euclidean algorithm to compute the GCD. If the GCD is 1, the numbers
are co-prime. For example:

e 8and 15 are co-prime because gcd(8,15) = 1
e 14 and 21 are not co-prime because gcd(14,21) = 7
Polynomial Modular Arithmetic in Z, [x]
Polynomial modular arithmetic in prime fields combines concepts from modular arithmetic and polynomial arith-

metic over finite fields. Let I, be a prime field with p elements, where p is prime.

Polynomial Ring I, [x] The polynomial ring I, [x] consists of all polynomials with coefficients from F,,. A general
element of F,, [x] has the form:
f(x) = anX™ + anax™ T4+ -+ a1x + ag

where a; € I, foralli.

Basic Operations

e Addition and Subtraction: For f(x) = 5_ a;xtand g(x) = Y bixi,
(F+g)x) =) (ai®@bi)x'
(f—g)x) = Z(ai o by)x!

(F-9)x) =Y (Y ai@b)x

¢ Division with Remainder: For f(x) and g(x) # 0, there exist unique q(x) and r(x) such that: f(x) = g(x)q(x) +
r(x), where deg(r) < deg(g).

e Multiplication:

Modular Reduction

When working with polynomials modulo another polynomial m(x), we perform operations and then reduce the result
modulo m(x). This is denoted as:
f(x) = g(x) (mod m(x))

which means m(x) divides f(x) — g(x).

Examples

1. In Zs[x] mod (x? +1):
x+1)2=x>+2x+1=2x+2

2. InZs[x] mod (x% + 2):

(2x+1)(x+2)=2x° +bx+x+2=2x*+2x+2=3x+3

Irreducible Polynomials

A polynomial f(x) € Z, [x] is irreducible if it cannot be factored into the product of two non-constant polynomials in
Zy [x]. Irreducible polynomials are crucial for constructing finite field extensions.

For example, x2 + 1 is irreducible in Zs[x] but reducible in Zz[x] as x> + 1 = (x + 1)(x + 2) (mod 3).
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Subfields

Definition A subfield of a field F is a subset K C F that is itself a field under the operations of F. More formally, K is
a subfield of Fif the following five properties hold:

K is a subset of F

K is closed under the addition and multiplication operations of F
K contains the additive and multiplicative identities of F

Every element in K has an additive inverse in K

Every non-zero element in K has a multiplicative inverse in K

aOrWON

Properties

e Minimal Subfield: Every field F contains a unique smallest subfield, called the prime subfield. It is isomorphic
to either Q (if F has characteristic @) or IF,, (if F has characteristic p).

o Tower Law: If E is a subfield of F and F is a subfield of K, then [K : E] = [K : FI[F : E].
e Degree of Subfield: If K is a subfield of F, then [F : K] divides [F : F,,] where IF,, is the prime subfield of F.
e Galois Correspondence: In a Galois extension F/K, there is a one-to-one correspondence between the sub-
fields of F containing K and the subgroups of the Galois group Gal(F/K).
Examples
1. Subfields of C:

e QCcRcCC
e QvV2)CR
e Qi)cC

2. Subfields of Finite Fields: Let IF,» be a finite field. Then [F,,m is a subfield of F,~ if and only if m divides n.
Example: Subfields of F,.

L] ]Fz C le.
o Fzz C IFZI.

3. Algebraic Number Fields: Consider Q(v/2, v/3). Its subfields include:

Field Extensions and Towers over Finite Fields

Let p be a prime number. We'll consider field extensions over Z,, = I}, the finite field with p elements.

Basic Definitions

e Automorphism: An automorphism of a field F is a bijective ring homomorphism from F to itself. The set of all
automorphisms of F forms a group under composition.

e Endomorphism: An endomorphism of afield F is a ring homomorphism from F to itself. Unlike automorphismes,
endomorphisms are not necessarily bijective.

e Frobenius Endomorphism: In a field of characteristic p, the map ¢ : x — xP is an endomorphism called the
Frobenius endomorphism. In finite fields, it's always an automorphism.
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Field Extensions

A field extension E /F is a field E containing F as a subfield. The degree of the extension, denoted [E : F], is the dimen-
sion of E as a vector space over F.

For a finite field IF,,, we can construct extensions [F,,» of degree n over IF,,.
Example in Zs: Let’'s construct IFo5 as an extension of Fs.

1. Choose an irreducible polynomial f(x) = x? + 2 € Fs[x].
2. Fys =Fs[x]/(f(x)) ={ax+b | a,b € Fs}
3. Arithmetic in Fy5 is performed modulo f(x).

For instance, in Fos:

(3x+4) % (2x+1) =6x> +3x +8x+ 4 =6x> +11x+ 4 =6(3)+x+4=3x+4 (mod x? +2)

Towers of Field Extensions
A tower of field extensions is a sequence of fields F1 € F, C ... C F, where each F; 1 /F; is a field extension.

General construction for [F,,».: We can build F,» as a tower of extensions over [,
Fp CFpx CFpm CFpn

where klm/n.
Example tower in Zs: Let's construct Fgo5 = Fé as a tower:
Fs C Fas5 C Feos

1. Fys5 = Fs[x]/(x? + 2) as before

2. Fozs =Faslyl/(y2 +y +2)
In this tower:

[Fas : Fs] =2 — [Fgos : Fas] =2

By the tower law: [Fgps : Fs] =2 %2 =4

Algebraicity
This is a topic that is advanced even for the scope of this revision, but it becomes important to consider later, and is a
key concept of Galois theory. Given an extension E D Fand an elementd € E, the following conditions are equivalent:

e disarootof f(t) # @ € F[t]
e {1,9,92, ---}arelinearly independent on F;
e F[9]isafield

9 is called algebraic over F if any of these conditions are met (and thus all of them). An extension E C Fis algebraic iff
V9 € E,dis algebraic. Alsoif [E : F] < oo, E is algebraic over F.

You can also show that for 9 € E,if f(§) = @ for f(t) = ag + aqt + - - - + an_1t" 1 + a,t™ with a; € E algebraic, then
9 is algebraic over F, aka addition and multiplication preserve algebraicity.

For prime order fields, all this means is that there is a unique (up to isomorphism) extension field F, D [, of degree
[Fq :Fp] =randorder q = p". Namely:

o0
Fp 2 | JFpr
=1

Defining a morphism or curve, for example, over the algebraic closure of a finite field is a concise way to say that
we're interested in points lying in all valid extensions that satisfy the curve equation, and that the mapping or what
not behaves similarly for all of them.
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Automorphisms and the Frobenius Endomorphism

InIF,», the Frobenius endomorphism ¢ : x — xP is an automorphism, and its powers generate the Galois group of
Fyn overIFp,.

Example in ;5 over Fs5: The Frobenius automorphism ¢ on Fo5 = Fs[x]/(x? + 2) is:
dlax+b)=(ax+b)> =a’>x> +b> =ax’> +b=a(3x)+b (mod x? + 2)

The Galois group Gal(F»5/Fs) = {id, ¢} is cyclic of order 2.

Affine and Projective Varieties

Affine Varieties An affine variety is an algebraic variety in affine space k™.
Example: The parabolay = x? in k? is an affine variety defined by the polynomial f(x,y) =y — x°.

Projective Varieties To define projective varieties, we first introduce projective space:

Definition 3 (Projective Space): The projective n-space over k, denoted P™ (k) or simply P™, is defined as:
P = (k™1\{@})/ ~
where ~ is the equivalence relation (xg,...,xn) ~ (Axg,...,Ax ) forany A € k*.

A projective variety is an algebraic variety in projective space P™.
Definition 4 (Projective Variety): For a set of homogeneous polynomials S C k[xg, ..., xn], we define the projective
algebraic set V(S) as:
V(S) ={lag:...: an] € P": f(ag,...,an) = 0Oforall f € S}
A projective variety is an irreducible projective algebraic set.

Example: The projective conic x? + y? = z? in P? is a projective variety.

Coordinate Rings
The coordinate ring of an algebraic variety encodes its algebraic structure.

Definition 5 (Coordinate Ring): For an affine variety X C k™, the coordinate ring of X is:
kIX] = k[x1,...,xa]/I(X)

For a projective variety X c P™, we define the homogeneous coordinate ring as:
S(X) = klxg, -, xnl/1(X)

where 1(X) is the homogeneous ideal of polynomials vanishing on X.

Properties of Algebraic Varieties

1. Dimension: The dimension of an algebraic variety X is defined as the transcendence degree of its function field
k(X) over k.

2. Singular Points: A point p on a variety X is singular if the rank of the Jacobian matrix at p is less than the
dimension of X.

3. Zariski Topology: The Zariski topology on k™ or P™ is defined by taking algebraic sets as closed sets. This
topology is fundamental in algebraic geometry.

4. Morphisms: A morphism between varieties X € k™ and Y C k™ is a function ¢ : X — Y such that each
component is given by a polynomial function.
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Roots of unity

Let G be a multiplicative group and n be a positive integer. An element w € G is called an n-th root of unity if w™ = 1,
where 1 is the identity element of the group. The set of all n-roots of unity forms a cyclic subgroup of G of order
dividing n. We can also discuss primitive roots of unity if w® # 1 forall 1 < k < n, and these are generators of the
cyclic subgroup of n-th roots of unity. These play important roles in the pairing operation as we discuss later.
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Elliptic Curves

The demand for robust, efficient, and scalable cryptographic systems increases constantly. While traditional crypto-
graphic methods like RSA have served us well for decades, they face growing challenges in terms of key size, com-
putational efficiency, and resistance to quantum computing attacks. This is where elliptic curve cryptography (ECC)
steps in, offering a powerful alternative that addresses many of these concerns.

1. Smaller Key Sizes: ECC can provide the same level of security as RSA with significantly smaller key sizes. For
example, a 256-bit ECC key offers comparable security to a 3072-bit RSA key.

2. Improved Computational Efficiency: The smaller key sizes in ECC translate to faster computations, especially
on resource-constrained devices like smartphones or embedded devices.

3. Quantum Resistance: While not completely quantum-safe, ECC is believed to be more resistant to quantum
computing attacks than RSA for equivalent security levels.

4. Versatility: ECC can be used for a wide range of cryptographic operations, including key agreement, digital
signatures, and pseudorandom number generation.

Definition and Basic Properties

An elliptic curve E over a field K is a smooth, projective algebraic curve of genus one, with a specified point O. In
characteristic not 2 or 3, every elliptic curve can be written in the typical functional form like one familiar from calculus:

E:y?=x*+ax+b

where a,b € K. This is called the short Weierstrass form of the curve. While in theory any pair of curve parameters
(a,b) could be used, there are only certain classes of these parameters which prove useful for practical implemen-
tations, a key metric for which is called the discriminant:

A=-16(4a®+27b%) # 0

Key properties of elliptic curves include:

1. Symmetry: The curve is symmetric about the x-axis.

2. Smoothness: There are no cusps, self-intersections, or isolated points.

3. Group Structure: Points on the curve, along with a special "point at infinity,” form a mathematical group under
a geometrically defined addition operation.

Elliptic curves, when combined with the addition formulae below, have a rich algebraic structure that forms the basis
of modern cryptography. The security of ECC relies on the difficulty of the "elliptic curve discrete logarithm problem”
- given points P and Q on the curve, find the integer k such that Q = kP (where kP means P added to itself k times).

Geometric Interpretation The way we combine points on these curves, the definition of our binary operator on
these curves, will determine how viable these structures are for our goal of performing cryptography with them. For
points P, Q on E, we have the following rules for addition and doubling.

Toadd P and Q (chord rule):

e Draw a line through P and Q
e Find the third intersection point R with E
e Reflect R across the x-axis to get P + Q

To double P (tangent rule):

e Draw the tangentlineto E at P
e Find the second intersection point R with E
e Reflect R across the x-axis to get 2P

However, this geometric process encounters an issue in certain scenarios:

1. Vertical Lines: When adding P and —P (its reflection across the x-axis), the line connecting them is vertical and
doesn’t appear to intersect the curve at a third point.
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2. Tangent at Inflection Point: When doubling a point that is an inflection point of the curve, the tangent line
appears to intersect the curve only once.

To resolve these cases and maintain closure under our addition operation, we introduce the point at infinity. Concep-
tually, we can think of it as the point where all vertical lines intersect "at infinity.”

The Point at Infinity From an algebraic perspective, the point at infinity serves several crucial roles:

1. Identity Element: In group theory, every group must have an identity element. For elliptic curves, O serves as
this identity, satisfying P + O = P for all points P on the curve.

2. Inverse Elements: The existence of inverse elements is another group axiom. For any point P on the curve, its
inverse —P is defined such that P + (x,—y) = O.

3. Closure: By including O, we ensure that the addition operation is always defined, even in the special cases
mentioned earlier. This closure property is essential for the set of points to form a group.

It is unfortunately difficult pragmatically to generate "infinity” on finite computation bounded machines, which com-
plicates the implementation of ECC suites. This manifests itself in the fact that the point at infinity can be represented,
in one form, as:

0= (51) ~ (oo

It turns out that there are other representations of the curve than short Weierstrass form that can get around this
limitation.

Affine and Projective Representations Projective coordinates offer an alternative representation of points on an
elliptic curve that circumvent the issue with infinity above. While affine coordinates (x,y) are intuitive, even disre-
garding the issue with infinity, simple inspection of the group law formulae below reveals that arithmetic in affine
coordinates requires inversion of field elements, which is in general expensive. Projective coordinates also aide to
remove these expensive inversions.

In homogeneous projective coordinates, we represent a point (x,y) on the curve as a triplet (X : Y : Z), where:

X Y
b 7z %7
In this representation, The point at infinity O is simply (@ : 1 : @).

Sylow uses both representations of group elements throughout the code where necessary.

Group Law

In the intuitive affine coordinates, the group of the elliptic curve, explicitly including the point at infinity, can be rep-
resented:
E={(xy) €eK?:y? =x>+ ax+ b} U{0}

while the group in projective coordinates can be represented:

E={X:Y:Z] e P*(K): Y’Z =X+ aXZ? + bZ?}

Algebraic Formulas We give the basic formulae for the chord- and tangent rules below in affine coordinates, which
is what you will see when encountering ECC from any textbook. Sylow implements optimized versions of these
formulae for arithmetic, but inspection of those algorithms is left as an exercise to the reader.

Defining P1 = (x1,Y1), P2 = (x2,Y2),and P3 = (x3,ys) = P4 + Pa:

|fP1 75 Pz:
X3 = ?\2 — X1 — X2
Yz = A(x1 —x3) — Y1
where A = ¥2—h

Xo—X1 "
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If Py = Py:
1 i X3 :}\2—27(,1
Ys = A(x1 —x3) — Y1

3x2+a

where A = ST

Scalar Multiplication
For a point P on E and an integer n, scalar multiplication [n]P is defined as:

(WP=P+P+---+P
~————

n times

This operation is fundamental in elliptic curve cryptography, and serves as the basis on which security stands in
elliptic curves. Namely, this scalar multiplication satisfies a few key properties:

1. No known efficient algorithm: There’'s no known algorithm that can solve the elliptic curve discrete log prob-
lem (ECDLP) in polynomial time for general elliptic curves. The best known general algorithms for solving
ECDLP (like Pollard’s rho algorithm) have exponential time complexity.

2. Large prime order: In cryptographic applications, elliptic curves are chosen with a large prime order. This
means the number of possible scalar values is extremely large, making brute-force attempts infeasible.

3. Obfuscated relationship: There is no clear relationship between the individual coordinates of the group ele-
ment representation and the scalar n, further compounding the DL problem.

Double-and-Add Algorithm An efficient method to compute [n]P is given by the “double-and-add” algorithm:

Algorithm 1 Double-and-Add Algorithm
Require: n € Z*,P € E(F)
Ensure: Q = [n]P
1. Convert n to binary: n = Z‘f:@ b; 2t
20Q+0 > O is the point at infinity
3: fori =k downto @ do
Q«2Q

4:
5: if b; = 1 then
6:
7

Q+~Q+P
end if
8: end for
9: return Q

Elliptic Curves over Finite Fields
When considering these curves for the first time, they are typically represented over the reals / complex numbers:
E={(xy) eR?:y*=%>+ax+b} U{O}

which looks like a sideways Lululemon logo. This picture is incredibly useful for understanding key aspects of elliptic
curves, such as the chord and tangent rules, therefore the group structure, as well as the impact of the curve pa-
rameters (a, b) on the behaviour / singularity of the curve, and others. However, this is not the base field over which
elliptic curves are generated in practice for many reasons:

1. ECDLP: there is no discrete log problem over the real numbers, since Vx € R, Hglﬁ € R, which is an easily
calculable quantity.

2. Exact represenation: Finite field elements can be represented exactly in computers, unlike real numbers
which require approximations and various |EEE standards to ensure consistency of implementation between
machines.
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3. Cardinality of the base field: In the reals, there is an uncountably large number of potential elements in the
group, which makes consistency of group arithmetic difficult.

Therefore, we define elliptic curves over a finite field K (typically I, or o= ), forming a finite Abelian group E(K).

Order of the Curve The number of points on E(F), denoted #E(IF ), satisfies the Hasse bound:
q+1-2/q<#E(Fq) <q+1+2{q

and is a key quantity to consider when choosing a curve, as it determines the total possible number of elements in
the group, and therefore the likelihood / difficulty of a brute force attack to the ECDLP.

Pairings

Pairings, also known as bilinear maps, have become an essential tool in modern cryptography, particularly in the
realm of ECC. Their importance stems from several key factors:

1. Tripartite Diffie-Hellman: Pairings enable the construction of one-round tripartite key agreements, which was
a long-standing open problem before their introduction.

2. ldentity-Based Encryption (IBE): Pairings made practical implementations of IBE possible, allowing public keys
to be derived from arbitrary strings like email addresses.

3. Short Signatures: Pairing-based cryptography enables the creation of very short digital signatures, such as
the BLS signature scheme.

4. Attribute-Based Encryption: Pairings facilitate more complex access structures in encryption schemes, allow-
ing for fine-grained access control.

5. Homomorphic Encryption: Some partially homomorphic encryption schemes leverage pairings for their
unique properties.

6. Zero-Knowledge Proofs: Pairings are crucial in many efficient zero-knowledge proof systems, particularly in
zk-SNARKSs (Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge).

A pairing is a bilinear map:
e: G1 X Gz — GT

where G1 and G, are typically additive groups (often subgroups of points on an elliptic curve), and G is a multiplica-
tive group. The key property is bilinearity:
e(an bQ) = e(Pv Q)ab

forall P € Gq, Q € Gy, and a,b € Z. In general these pairings involve two steps in their implementation: the
evaluation of an interior function, and the exponentiation of the result of that function to some exponent. The efficient
implementation of the evaluation of the interior function is what is known as “Miller’s loops”, which is followed by the
“final exponentiation” step. Generally speaking, both of these operations are expensive to compute given the size of
the curve orders used.

There is a great outline of the many types of pairings here, in one of the original manuscripts on the subject.

Weil Pairing The Weil pairing, denoted e,, (P, Q), is defined for points P and Q of order n on an elliptic curve E over
afinite field . It maps to the group of n-th roots of unity in an extension field of IF;:

e:E[U x E[l] = 1y

where E[1] is the 1-torsion subgroup and y is the group of 1-th roots of unity in Fq.

1. Bilinearity: e([a]P, [b]Q) = e(P, Q)°®
2. Non-degeneracy: If e(P,Q) = 1 forall Q € E[l],thenP =0
3. Alternating: ¢(P,P) = 1 forall P € E[l]
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Tate Pairing The Tate pairing, often denoted t,, (P, Q), is defined similarly but is defined on a broader class of inputs,
is faster to compute than the Weil pairing, and outputs elements in a quotient group, which requires an additional
final exponentiation in practice:

Tn 2 E(Fp)[U X E(Fpi) /IE(Fpr) = Fh/(Fhi )"

P

where k is the embedding degree.
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Optimal Ate Pairing

The Weil and Tate pairings are pedagogically those mentioned in any ECC reference material, but is not the pairing
used in Sylow, which is so important to the usage of Sylow that it is worth mentioning in some detail herein.

The development of the optimal ate pairing is part of a continuous effort to improve the efficiency of pairing compu-
tations in ECC. To understand its significance, we need to consider the evolution from the Weil and Tate pairings.

The Weil pairing requires two Miller loop calculations, making it relatively slow, and the Tate pairing requires a costly
final exponentiation step. The optimal ate mapping achieves the theoretical minimum number of iterations in the
Miller loop for a given embedding degree, and is optimized for specific families of pairing-friendly curves, like Barreto-
Naehrig (BN) curves. For BN curves, the loop length can be as low as log(r) /¢ (k).

Recall that the goal here is to take a point X € Gq = E(FF;,), and apoint Y € G, C E'(IF,,-), and map them to a point
in a target group Gt C F,+2, denoted by the map e, and corresponds qualitatively to multiplying a point in G4 by a
point in Go.

We need bilinearity, therefore requiring:

e([alX, [b]Y) = e(X, [b]Y)® = e(X,Y)** = e(X, [a]Y)® = e([b]X, [a]Y)

The “best” way to create this e is the “optimal ate pairing”, which has an excellent guide for high speed calculations in
software.

Before we dig into the pairing itself, we need to know how to define a line passing through two points on the twisted
curve, and what the line is evaluated at a point on the curve. Specifcally, R1 = (x4,y7),R2 = (x5,y5) € E'(F,2), and
T = (x,y) € E(F},), we have the line { defined as:

by (R w(R (T): Wz(xlz_X{l)y‘sz’(y{l_y/2)x+w5(xl1y/2_x,2y{|) Ry £ R
(R1),¥(R2) (3x/3 — 2y"2)(9 +u) + W3 (2yy’) + w*(—3xx'?) Ry = Ry

Armed with this knowledge, we now can define the optimal ate pairing e : G1 x G, — G to be:

p12_4
S

e(X,Y) = <f62+2,Y(X)€[62+2]‘1’(Y),¢p(‘P(Y)](X)€[62+2]‘1’(Y)+¢p(‘P(Y)),—o))p(‘i/(Y))(X)

Now say that 5 times fast. Here, z is the parameter of the curve. The pairing is based on rational functions f; o :
N x Gz x Gq — Fp» that are evaluated iteratively in what's called Miller’s algorithm.

Fantastically, the paper that describes this process was never published, but the algorithm, the implementation of
which is referred to as “Mliller’s loops”, says that:

firsy = fiyfvlawy), 5w y)

Technically, there is another factor in the denominator of these iterations that describes the evaluation of the point
Y(Y) on the vertical line passing through X. However, we can ignore this evaluation, for reasons summarized well by
this:

To compute a Tate pairing, a quotient is iteratively calculated (Miller’s algorithm) and then raised to power
of (p¥—1)/r, the Tate exponent. Each factor of the denominator is the equation of a vertical line evaluated
at a particular point, i.e. the equation X — a evaluated at some point (x,y), which gives the factor (x — a).

Because of the way we have selected our groups, x € F, 4, (note that the map V¥ leaves the x-coordinate
of its input in the same field), and a € IF,, hence (x — a) € F,,a.

Any element a € F,,« satisfies aP‘~". Observe pd — 1 divides (p* — 1)/r, because r cannot divide p¢ — 1
(otherwise d would be the embedding degree, not k). Thus each factor (x— a) raised to the Tate exponent
is 1, so it can be left out of the quotient. Hence, there is no need to compute the denominator at any time
in Miller’s algorithm.

Slick.
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Implementation

In decimals, we know z = 4965661367192848881, and therefore 6z + 2 = 29793968203157093288. Optimised
implementations represent this bound in the windowned non-adjacent form (WNAF), not binary, since it has a lower
Hamming weight.

There will be miller’'s loop to determine the first term in the optimal ate pairing. Then for the final two terms:

Notice that for E[E,ZJFZ]\{/(YMDP 28%) (X)
bp (W(Y)) = (W2X)P, (Wiy/)P) = (Wza(p—1J/3X/pywsa(p—n/zy/v) —y (gp—n/s?/,gp—n/zg/)
Since MJ¥Y(Q) = ¥(In]Q) by the homomorphism, we just evaluate the line now at the point:

Q' = (P13, P=1/2') = (x4,y1)

Further notice that for {is. 1 2pw(v) + ¢, (w(v)).—o, (v(v)) (X), you can likewise show that this is easily evaluated at the
point —Q.

Final exponentiation

Arguably, this is the most computationally expensive step since the bit size of the exponent in the pairing is huge, so
the naive approach would be silly. | mean, there are issues with the G, cofactor clearing to create elements in G,
from the field because of the size of the cofactor, so if multiplication is slow, exponentiation will be worse.

The following takes the lead from this and that.
The most efficient calculation of these pairings relies on notions of cyclotomic subgroups. Huh?

Well, up until this point, we were precise in the definitions of G, and G, but have been unclear about what exactly
the target group of the pairing should be. We now formally define the target group G+ to be the group of r-th roots
of unity over the multipicative group F:k = (F,«/{@}, ), denoted commonly by .. Why the roots of unity? Great

question.
Remember that this mapping has to satisfy a few key real-world properties:

¢ [t has to be a trapdoor, namely pre-image resistance (assuming DL hardness), and mapping backwards from
the roots of unity is a very difficult problem.
e There must be an easy metric against which we can compare two mappings.

- For example, in the case of signature verification e(oy, g2) = e(H(m), P(1)), itis very natural to want to set
the actual value of each side of this equation to “one”, therefore implying the image domain to be the roots
of unity. Note that this implies right away that |G4| = |G| = |G| = r, which makes the pairing retain the
correct group structure while still mapping to a cryptographically secure image, aka a group of “ones”.

In the following, let (F;k)f is the subgroup of r-th powers, namely all elements in F;k that are expressed as x" for
some x. We can then define the quotient group F;k/(F;k )™ which represent the coset of r powers, namely each
element in this quotient group differ by a power of r.

k_ T Ek*
Note that Vx € ]F;k, (XPT ) =P = 1, which means elements of the form x ™+ = Fy/(F3)", which is precisely

what the pairing function e does. There is a natural isomorphism between the quotient group and the roots of unity,
so we can equivalently talk about either. For the purposes of the following, however, we'll keep to the quotient group
representation since it admits a few additional insights we can use to our advantage.

Aside: this is not a light topic to cover, even for the level of depth in this document (hard to believe, | know), but is a
result from Galois theory and the so called Kummer theorems, see this
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Since the optimal ate pairing is mapping our “multiplication” of an element from G4 and an element from G to the
group of roots of unity by means of exponentiation of an element from the base field extension I, 2, it would be useful
to represent our exponent (p'2 — 1) /r in a form closer related to the roots of unity to which we're mapping.

To do this, we define what's called the cyclotomic polynomial, defined by an order n. This polynomial contains all of
the irreducible factors of x™ — 1 (which defines the roots of unity), and is therefore the polynomial whose roots are
the roots of unity. In this sense, this polynomial captures all of the structure of the roots of unity, and because of its
irreducibility, we can use it to build other mappings that deal with the group of roots of unity.

Specifically, we define the k-th cyclotomic polynomial ®(x) to be:

pk—1
= @;(p)
Oy (p) jgk ’

which allows us to break down the exponent of the “final exponentiation” step. Writing the embedding degree k = ds,
where d is a positive integer, we can write:

P<=1_ | s _q). Zisep® {q)k(p)}
T Oy (p) T
easy part hard part

Easy part

For BN_254, this decomposes the easy partinto (p® —1)(p? + 1) for k = 12 (note that we choose this decomposition
because exponentiation by powers Off are very efficient, see the discussion earlier on the 12th order extension. The
easy part will involve something like xP°~1 = xP° .x~1, which is one conjugation, one inversion, and one muiltiplication
(remember that conjugation in IF,,q> for an element x = a + bw is simply X = a — bw). Then taking (xP°~1)P* is just

applying our Frobenius morphism ¢, and then finally we multiply by our already-computed value xP°~", and voila!

Easy part =1 conjugation + 1inversion + 1 multiplication + 5 multiplications + 1 multiplication.

Hard part

For BN_254, the hard part decomposes into PA—*EZJ It seems that the typical way to go here is to take a base-p
expansion, namely defining A = meoy (p)/r with r { m, and finding a vector T of w + 1 integers T = (A, ..., A, ) such
that A = 3~ A;p* minimizing the L1-norm of 7. Recall that for us:

plz) = 362* + 362> +242% + 62 +1

T(z) = 362 + 362° + 1822 + 62+ 1
t(z) = 622 + 1

so substituting these into the hard part of the polynomial as a function of the curve family generator z yields Asp> +
7\2p2 + A1p + Ag With:
)\3 (Z) =1

A2(z) = 622 +1
M(z) =—362z>—1822 — 122+ 1
Ao(z) = —362° — 302> — 182 —2

We now then compute the hard part as a series of multiplications in terms of powers of the easy part.

1. Compute 2, (f2es )%, (fZae,)*
2. Use the Frobenius operator, which has efficient representations in powers 1, 2, and 3 of the prime, to compute

2 3 2 3 5] 2
fgasyv fgasyr TCgas.yv (féasy)pr (fgasy)p' (fgasy)pl (féasy)p
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The evaluation then amounts to:

2 3
[fBasy - TRasy - Thasy] - [1/Feasy]? - [(F2aey P10 - [1/(F2ag) )P112 - [1/ (e, - (F2ag) )PII™8 - [1/F20 130 - [1/(fag, - (foag, )PP
\W—/ " — N

= —a.2 _ . — — —
=VYo =y§ =y} =yi? =y;® =y3° =y

These evaluations have efficient algorithms that have been around for a long time. We take the vector addition chain
approach, which is more or less the equivalent of “flattening” that we also see crop up in the reduction of polynomial
constraints in instance-witness definitions of RICS systems. You can show that the following definitions yield efficient
computation of these multi-exponentials which we take from the original manuscript:
To + (yo)?
To < To -y
To < To-ys
T < ys-ys
T« T -To
To < To-y2
Ty + (T1)?
T« T To
Ty + (Th)?
To < Tq-yn
Ti < T1-ye
To + (To)?

fhard < To - Tq

which is only a few multiplications and squarings! Efficient. There's extensions and improvements, but that’s the basic
stuff.

Glued Miller loops

Remember that eventually we want to check the relation e(o3, g2) = e(H(m), P(i)) for verification. You could just
naively evaluate lhs and rhs and check for equality. Right? Or notice that:

e(0i, 92) = e(H(m), P(1))

— e(01,g2)e(H(m),P(1))~" =1
= e(oy,g2)e(H(m),—P(i)) =1

12

121
= (flezr21,0:(92) Tz (m) (—P(R)) 7 =1
which results in only having to evaluate a single Miller loop, followed by a single exponentiation at the end! Also during
the recursion we don't need to track f; (G) nor f; yy(m)(—xG), just their product, which saves a multiplication in F4
in each iteration of this glued Miller loop. The savings compound since we're aggregating many partial signatures,
and the idea works exactly the same for the aggregated signatures. Namely, verification is equivalent to:

12_4

t T
<H floz+2],0: (92)Fl62z+2) H(m) (—P(i))> =1

i

This is the gist of it. There’s so many more things to work with, like different pairings like the Xate pairing, but that’s
beyond the scope here. I'll just mention maybe that there are many more cleverer things you can do to take full ad-
vantage of the cyclotomic subgroup stuff like efficient compression and arithmetic on compressed representations
of elements, but that's over the top for now.
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BN, BN254, and BLS

Now, having covered the preliminaries required, we begin our discussion of Barreto-Naehrig (BN) curves and Boneh-
Lynn-Shacham (BLS) signature scheme. For Sylow we chose to implement initially over the BN_254 curve, with a
highly optimized implementation, and use the BLS signature schema. The reasoning here is that as of writing, in
Summer of 2024, BN_254 has support in the Ethereum Virtual Machine (EVM) at precompile @x08.

Recall from the front matter that our primary use cases at WARLOCK for elliptic curve cryptography, bilinear pair-
ings, and threshold signature schemes revolve around multi-party computation and collaborative entropy genera-
tion, namely using these for verifying the integrity of values on the blockchain. Thus, we needed a method which was
flexible to a dynamic network and supported on-chain. This selection met those criteria, though perhaps an alterna-
tive curve like BLS_12_381 will be the premier choice in the near future as support rolls out for that in a future hard
fork.

With that said, all of the particulars we will discuss, if not all of the low level optimizations, extend to other curves in
this family more generally.

Here we'll rebuild the particulars of the library and its optimizations into the narrative of the choices made during
developments of Sylow, what it can be used for now, and some forward looking goals as well.

Barreto-Naehrig (BN) Curves

Before we get into that, and having general intuitions about the way these sort of elliptic curves work, let’s get into
the particulars of the BN family of curves.

Definition and Properties

The BN curves are a family of pairing-friendly elliptic curves defined over a prime field IF,,. These curves have the
following key properties:

1. The order of BN curves is always a prime number n. What this means is that the underlying field is of a prime
order, and thus forms some kind of normal algebra in a modular sensg, if you think back to the discussion in
the math primer.

2. The embedding degreeis k = 12, which provides a good balance between security and efficiency for pairing-
based cryptography. It's large enough to resist index calculus attacks on the discrete l